## FOURTEENTH EQUINE NUTRITION AND PHYSIOLOGY SOCIETY SYMPOSIUM Ontario, California January 19-21, 1995

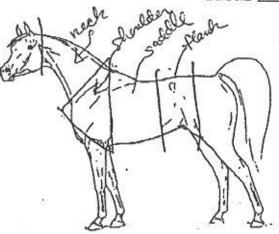
| Section Preference            | Corresponding Author Dr. Sandi Lieb                        |
|-------------------------------|------------------------------------------------------------|
| (Indicate 1st and 2nd choice) |                                                            |
| s                             | Address Rm 106, Bldg 459 Univ. of FL Gainesville, FL 32611 |
| Nutrition Physiology of       | Phone 904/392-7528                                         |
| Reproduction                  | Please check first choice:                                 |
| Extension & Teaching          | KJK Oral [] Poster                                         |
| Exercise Physiology           | [ ] Graduate student award (production and management      |
| Production & Management2      | not eligible)                                              |

THE EFFECT OF A NUTRIENT SUPPLEMENT ON THE RESPIRATION, PULSE, TEMPERATURE, SWEATING, AND SERUM ELECTROLYTE AND AMINO ACID LEVELS OF ANHIDROTIC HORSES

Sandi Lieb, Kathleen Bowker, Guy Lester, Sarah Ralston and Pamela E. Ginn

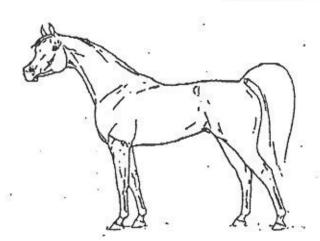
## University of Florida, Gainesville, FL

Anhidrosis is a significant health problem in even sedentary horses living in hot, humid climates. The purpose of this study was to determine if an oral nutritional supplement would alleviate clinical signs of anhidrosis, such as absent or abnormal sweat patterns, increased respiratory rates and increased body temperature, in anhidrotic horses. Twelve anhidrotic and four control (normal) horses were observed under mostly pasture conditions for eight weeks during the months of July and August. At the beginning of the study, the anhidrotic horses were started on an oral supplement containing vitamin C, L-tyrosine, niacin and cobalt at a level of 17 mg/kg body weight twice daily in the regular grain ration. Respiration and pulse rates, body temperature and Jankinson sweat pattern scores (Jenkinson, 1989) were taken between 1000 and 1700 h four days per week. At 0, 4 and 8 weeks terbutaline sweat blot tests and blood samples were taken.


The overall mean respiration rate, pulse rate and body temperature for both groups of horses were not different (P<.03). A group by week interaction (P<.05) was seen for all factors except the Jenkinson sweat pattern scores of the control The respiration and pulse rates and body temperature means for the control group were higher during the beginning and end but lower in the middle of the study (P<.05). The anhidrotic group showed a decrease, either linear or quadratic, in respiration rates, body temperature and Jenkinson sweat pattern score throughout the study (P<.03). The Jenkinson sweat pattern scores of the anhidrotic group were similar to the control group by the eighth week. The anhidrotic group means for weeks 1, 2, 3, 4, 5, 6, 7 and 8 were: respiration (expirations/min) - 63, 56, 40, 46, 46, 38, 46, and 47; pulse (beats/min) - 44, 42, 42, 41, 41, 40, 42 and 42; body temperature (°C) - 38.5, 38.3, 38.2, 38.2, 38.2. 38.1, 38.0, 38.2 and 38.2; Jenkinson sweat pattern score - 63, 66, 62, 62, 59, 55, 49 and 46, respectively. No group differences were found for the terbutaline sweat blot tests, which measure the sweat capacity of the individual sweat glands. There were no mean differences between groups for any of the serum electrolytes measured (Mg, Na, K, P, Ca and Cl) or for most of the serum amino acids (tyr, phe, his, lys, trp, arg, pro, ile and leu). The mean serum alanine was higher (120 vs 97 µM/ml, P<.005) and mean serum methionine was lower (6.15 vs 5.19 µM/ml, P<.10) for the treated group compared to the controls. Many of the serum electrolytes and amino acids showed time differences and/or time-group interactions. The dietary supplement appeared to improve heat dissipation in non-exercised anhidrotic horses by increasing the amount of body sweat area.

Must be received by July 8, 1994. Send original and three copies to program chairman: Bob Coleman, Alberta Agriculture, Food and Rural Development, #905, 6909-116 Street, Edmonton, Alberta, Canada, T6H 4P2. Fill out attached abstract receipt form, front and back, and return with your abstract.

## PHYSIOLOGICAL RECORDS


| DateTir<br>Respiration (exp/mi | n)                    |       | oudy / Bre<br>(beats/mi |             |       |
|--------------------------------|-----------------------|-------|-------------------------|-------------|-------|
| Rectal temperature             | e (F)                 | Relat | Relative Humidity       |             |       |
| Jenkinson sweat as             | sessment:<br>shoulder | neck  | saddle                  | flank       | total |
| overall sweat:                 | ing 0                 | 0     | 0                       | Ō           | .0    |
| slight sweati                  |                       | 10    | 10                      | 15          |       |
| no sweating                    | 20                    | 20    | 20                      | 25<br>total |       |

Outline areas of sweat (made when horse at rest/after \_\_\_\_ mininutes of exercise): (sweat is not salty / salty )



| DateRespiration              | Time(exp/min) | S\       |                   | udy / Bre<br>(beats/mi |       |       |
|------------------------------|---------------|----------|-------------------|------------------------|-------|-------|
| Rectal tempe<br>Ambient temp | erature (F).  | ant.     | Relative Humidity |                        |       |       |
| Jenkinson sw                 | eat assessm   | shoulder | neck              | saddle                 | flank | total |
| overall                      | sweating      | 0        | 0                 | 0                      | . 0   | 0     |
|                              | sweating      | 10       | 10                | 10                     | 15    |       |
| no swea                      |               | 20       | 20                | 20                     | 25    |       |

Outline areas of sweat
(made when horse at rest/
after \_\_\_\_ mininutes
of exercise):
(sweat is not salty / salty)



## General Linear Models Procedure Least Squares Heans

| GRP                                  | LSMEAN                                                                                                       | PR<br>LSMEAN                                                                                                | BODTEMP<br>LSMEAN                                                                                            | JS<br>LSMEAN                                                                                                 |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| con                                  | 38.3593750<br>47.8750000                                                                                     | 40.5625000<br>41.8333333                                                                                    | 100.607812<br>100.792969                                                                                     | 46.4062500<br>57.8255208                                                                                     |
|                                      | Cooker                                                                                                       | Cular                                                                                                       | M.A.                                                                                                         | Lastemaran                                                                                                   |
| WK                                   | rr<br>Lsmean                                                                                                 | LSMEAN                                                                                                      | BODTEMP<br>LSMEAN                                                                                            | JS<br>LSMEAN                                                                                                 |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | 56.0833333<br>49.3333333<br>34.4166667<br>39.5625000<br>42.5416667<br>34.2500000<br>41.0208333<br>47.7291667 | 44.666667<br>41.6666667<br>40.8958333<br>40.0833333<br>41.1666667<br>39.2916667<br>40.2291667<br>41.5833333 | 101.127083<br>100.897917<br>100.581250<br>100.569792<br>100.596875<br>100.462500<br>100.615625<br>100.752083 | 52.7083333<br>55.8333333<br>55.7291667<br>54.3229167<br>52.9166667<br>55.5208333<br>48.3854167<br>41.5104167 |

| -     | ****  | 200        |            |            |            |
|-------|-------|------------|------------|------------|------------|
| GRP   | WK    | RR         | PR         | BODTEMP    | JS         |
|       | weeks | LSMEAN     | LSMEAN     | LSMEAN     | LSMEAN     |
| 0 con | 1     | 49.0000000 | 45.2500000 | 100.975000 | 42.1875000 |
| con   | 2     | 42.3750000 | 41.2500000 | 100.806250 | 45.6250000 |
| con   | 3     | 28.5000000 | 39.6250000 | 100.462500 | 49.3750000 |
| con   | 4     | 33.1250000 | 39.0000000 | 100.418750 | 46.5625000 |
| con   | 5     | 38.8750000 | 40.8750000 | 100.568750 | 46.8750000 |
| con   | 6     | 30.1250000 | 38.6250000 | 100.418750 | 55.6250000 |
| con   | 7     | 36.5000000 | 38.3750000 | 100.512500 | 47.5000000 |
| con   | 8     | 48.3750000 | 41.5000000 | 100.700000 | 37.5000000 |
| trt   | 1     | 63.1666667 | 44.0833333 | 101.279167 | 63.2291667 |
| f trt | 2     | 56.2916667 | 42.0833333 | 100.989583 | 66.0416667 |
| trt   | 3     | 40.3333333 | 42.1666667 | 100.700000 | 62.0833333 |
| trt   | 4     | 46.0000000 | 41.1666667 | 100.720833 | 62.0833333 |
| trt   | 5     | 46.2083333 | 41.4583333 | 100.625000 | 58.9583333 |
| trt   | 6     | 38.3750000 | 39.9583333 | 100.506250 | 55.4166667 |
| trt   | 7     | 45.5416667 | 42.0833333 | 100.718750 | 49.2708333 |
| trt   | 8     | 47.0833333 | 41.6666667 | 100.804167 | 45.5208333 |
|       |       |            |            |            |            |